

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

anch : B.Tech – CSIT
[

Year & Sem: II-B.Tech & I-Sem

<u>UNIT –I</u>

Binary Systems, Boolean Alegebra

1.	1. a) Convert the following numbers	(L5) (5M)
	i) $(41.6875)_{10}$ to Hexadecimal number ii) $(11001101.0101)_2$ to base-8 and bas iii) $(4567)_{10}$ to base2	
	b) Subtract $(111001)_2$ from (101011) using 1's complement?	(L5) (5M)
2.	a)Represent the decimal number 3452 in i)BCD ii)Excess-	(L5)(3M)
	b) perform (-50)-(-10) in binary using the signed-2's complement	(L5)(3M)
	c) Determine the value of base x if(211)x=(152) ₈	(L5) (4M)
	3. a)Convert the following numbers i) $(AB)_{16} = (2 ii) (1234)_8 = (2 iii)(101110.01)_2 = (2 iii)_8$	(L5) (3M)
	b) Convert the following to binary and then to gray code $(AB33)_{16}$	(L5) (3M)
	c) Perform the following Using BCD arithmetic (7129) $_{10}$ + (7711) $_{10}$	(L5) (4M)
4.	Simplify the Boolean expressions to minimum number of literals i) $(A + B)(A + C')(B' + C')$ ii) $AB + (AC)' + AB'C(AB + C)$ iii) $(A+B)' (A'+B')'$	(L5) (10M)
5.	Explain the Binary codes with examples?	(L2) (10M)
6.	Explain about complements with examples?	(L2) (10M)
7.	a)Simplify the Boolean expressions to minimum number of literals	(L5) (5M)
	i) $X' + XY + XZ' + XYZ'$ ii) $(X+Y) (X+Y')$	
	b) Obtain the Complement of Boolean Expression	(L5) (5M)
	i) $A+B+A'B'C$ ii) $AB+A(B+C)+B'(B+D)$	
8.	Convert the following	(L5) (10M)
	a) $(1AD)_{16}=()_{10}$ b) $(453)_8=()_{10}$ c) $(10110011)_2=()_{10}$ d) $(5436)_{10}=()_{16}$	
9.	a) The solution to the quadratic equation $x^2-11x+22=0$ is $x=3$ and $x=6$ what is number	the base of the (L5) (5M)

	QUESTION BANK 2018
Convert the following numbers	(L5) (5M)
i) $(615)_{10} = ()_{16}$ ii) $(214)_{10} = ()_8$ iii) $(0.8125)_{10} = ($ iv) $(658.825)_{10} = ()_8$ v) $(54)_{10} = ()_2$)2
10. a) Explain the Excess-3 code?	(L2) (5M)
b) Write about Error correction & Detection?	(L2) (5M)

<u>UNIT –II</u>

Gate Level Minimization

1.	Simplify the following Boolean expression using K-MAP and implement usin $F(W,X,Y,Z) = XYZ+WXY+WYZ+WXZ$	ng NAND gates. (L5) (10M)
2.	Simplify the Boolean expression using K-MAPF(A,B,C,D) = $\sum m(1,2) + d(7,15)$	2,3,8,9,10,11,14) (L5) (10M)
3.	Simplify the Boolean expression using K-map and implement using NAND ga	ites
	$F(A,B,C,D) = \sum m(0,2,3,8,10,11,12,14)$	(L5) (10M)
4.	Reduce the expression $f(x,y,z,w) = \pi M(0,2,7,8,9,10,11,15)$.d (3,4) using K-Mag	p? (L5) (10M)
5.	Simplify the Boolean expression using K-map?	(L5)(10M)
_	$F(A,B,C,D) = \sum m(0,1,3,4,5,9,13,15,)$	
6.	Obtain the minimal product of sums and design using NAND gates $F(A,B,C,D) = \sum m(0,2,3,6,7) + d(8,10,11,15)$	(L5)(10M)
7.	Explain NAND- NOR implementations?	(L5) (10M)
8.	a) Design the circuit by Using NAND gates $F = ((A+B)c)'D$	(L5) (5M)
	b) Design the circuit by Using NOR gates $F = (X+Y) \cdot (X'+Y'+Z')$	(L5) (5M)
9.	Simplify the Boolean expression using Tabular Method	(L5) (10M)
	$F(A,B,C,D) = \sum m(0,2,3,6,7,8,10,12,13)$	
10	. Simplify the Boolean expression using K-MAP	(L5) (10M)
	$F(A,B,C,D) = \pi M (3,5,6,7,11,13,14,15) .d(9,10,12)$	

QUESTION BAN	JK 2018
<u>UNIT –III</u>	
Combinational Logic	
1. Explain the difference between combinational and sequential circuits?	(L5) (10M)
2. A)Implement the following Boolean function using 8:1 multiplexer	(L5) (5M)
F(A, B, C, D) = A'BD' + ACD + A'C' D + B'CD	
B)Explain about parallel adder Adder?	(L2)(5M)
3. A) Explain Design Procedure of combinational circuits?	(L2) (5M)
B) Explain Full binary subtractor in detail?	(L2) (5M)
4. Design the combinational circuit binary to gray code?	(L5) (10M)
5. A)Explain about Binary Half Adder?	(L2) (5M)
B)What is Full Adder? Design & Explain the operations of Full Adder?	(L2) (5M)
6. A)Implement the following Boolean function using 8:1 multiplexer	(L5)(5M)
$F(A,B,C.D) = \Sigma m (0,1,2,5,7,8,9,14,15)$	
B) Explain about Decimal Adder?	(L2) (5M)
7. A)Design a 4 bit adder-subtractor circuit and explain the operation in detail?	(L5) (5M)
B) Explain the functionality of a Multiplexer?	(L2) (5M)
8. Implement BCD to 7-segment decoder for common cathode using 4:16 decoder?	(L5) (10M)
9. A)Design a 4 bit binary parallel subtractor and the explain operation in detail?	(L5) (5M)
B) Design the combinational circuit of Binary to Excess-3 code convertor?	(L5) (5M)
10.What is combinational circuits and explain analysis and design procedure of circuits with an example ?	combinational (L1) (10M)

Q	UESTION BANK	2018
<u>UNIT –IV</u>		
Synchronous Sequential Logic		
1. A) Explain the Logic diagram of JK flip-flop?	(I	L2) (5M)
B) Write difference between Combinational & Sequential circuits?	(I	A) (5M)
2. Explain the Logic diagram of SR flip-flop?	(I	.2) (10M)
3. A) Draw and explain the operation of D Flip-Flop?	(I	L5) (5M)
B) Explain about Shift Registers?	(I	L2) (5M)
4. A) Draw and explain the operation of T Flip-Flop?	(I	L5) (5M)
B) Explain about Ring counter?	(I	L2) (5M)
5. A) Explain about ripple counter?	(I	.2) (10M)
6. Explain the working of the following	(L2 & L5	5) (10M)
i) S- R flip-flop		
ii) D flip-flop		
7. A)Explain the difference Asynchronous and synchronous sequential c	ircuits? (L2) (5)	M)
B) Draw the circuit of D Flip-flop using NAND latch	(L2) (5M	1)
8. What is race-around condition? How does it set eliminate is a Master –	slave J-K flip-flop	? (L2)(10M
9. A) Explain synchronous and ripple counters compare their merits and o	demerits?	(L2) (5M)
B) Design a 4 bit binary synchronous counters with D-flip flop?		(L5) (5M)
10. a)Write the truth table of clocked T- Flip Flop?		(L1)(3M)
b) Write the differences between latches and flip flops?		(L1)(4M)
c) Write the differences between synchronous and asynchronous	counters?	(L1) (3M)

<u>UNIT –V</u>

Memory and Programmable Logic , Digital Logic Circuits

1. A) Write difference between PROM &PLA &PAL?	(L4) (5M)
B) Explain about Error correction & Detection Codes ?	(L2) (5M)
2. Encode the 11-bit code 10111011101 into 15 bit information code?	(L3)(10M)
3. Implement the following function using PLA A(x,y,z)= $\sum m(1,2,4,6)$ B(x,y,z)= $\sum m(0,1,6,7)$ C(x,y,z)= $\sum m(2,6)$	(L5)(10M)
4. Design PAL for a combinational circuit that squares a 3 bit number?	(L5)(10M)
5. What is memory decoding? Explain about the construction of 4 X 4 RAM ?	(L2) (10M)
6. Construct the PROM using the conversion from BCD code to Excess-3 code?	(L5)(10M)
7. Implement the following functions using PLA. $A(x,y,z) = \sum m(1,2,4,6) B(x,y,z) = \sum m(0,1,6,7) c(x,y,z) = \sum m(2,6)$	(L5)(10M)
8. A)Construct the PROM using the conversion from BCD code to Excess-3 code?	(L5)(10M)
9. A)Explain about Hamming Code with example?	(L2)(5M)
B) Explain about memory decoding error detection and correction?10. A)Explain different types of ROM?B) Write a short notes on Programmable array Logic?	(L2)(5M) (L1) (5M) (L1) (5M)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : Digital Logic Design(16CS506)

Course & Branch: B.Tech - CSIT

Year & Sem: II-B.Tech & I-Sem

<u>UNIT – I</u>

Binary Systems, Boolean Alegebra

1. (75.23) is a C	Octal number convert to it eq	uivalent binary number		[]
A) 1110111.	110111 B) 111110.010110	C)1111111.110110	D)111101.01	0011	
2. 9's complem	ent of 1234 is			[]
A) 8764	B) 8765	C) 7886	D) 7768		
3. Find 2's com	plement of (11000100)			[]
A) 0011110	B) 110000100	C) 1010101010	D) none		
4. Non-weighte	ed code is			[]
A) Gray code	e B) Decimal	C) Binary	D) octal		
5. Decimal valu	ue base is			[]
A) 10	B) 8	C)16	D) 2		
6. $A^{1}B^{1} =$				[]
A) $A^{1}+B^{1}$	B) $(A+B)^{1}$	C) AB	D) A+B		
-	ave any one input is high th			[]
A)EX-OR 8. Convert 0.5 de	B)NAND ecimal number to its binary e	C)NOT equivalent	D) EX-NOR	[1
A)0.1011	B) 0.1011	C) 0.1000	D) 0.1010110	-	-
9. BCD code fo			, ,	[1
A) 011010	010010 B) 00010000010	01 C) 10010010	D) 10010011	_	-
10. 10's compler	ment of $(52520)_{10 \text{ is}}$			[]
A) 42479	B)47479	C)47480	D)47481		
$11.(52)_8$ is dec	timal equivalent to			[]
A) (50) 10	B) (42) ₁₀	C) (64) ₁₀	D) (35) ₁₀		
Digital Logic Design					Page 6

			QUESTION BA	NK 2	018
12. A decimal nu	mber 19 is in excess 3 code	e is written as		[]
A) 00110	B) 10110	C) 10110	D) 0011		
13. The higher sig	gnificant bit of this result is	called		[]
A) Sum	B) carry	C) 0	D) none		
14. Distributive l	aw is			[]
A) A(B+C) =	AB+AC B) AB=BA	C) A+(B+C)=	(A+B)+C D) I	none	
15. A+1 =				[]
A) A	B) 1	C) 0	D) none		
16. ABC+ABC'=	=			[]
A) A	B) AB	C) C	D) AC		
17. A+AB=		-		[]
A) 1	B)0	C) A	D) none		
18. Decimal 20 is	s in binary number system is	5		[]
A) 10101	B) 1111	C) 10100	D) 11001		
19. Find 1's com	plement of (11010100)			[]
A) 0010101	1 B) 11010100	C) 101010100	D) none		
20. What is the r	naximum number of differen	nt boolean function	s involving n Boo	lean va	riable
				[]
A) n ²	B)2 ⁿ	C)2*n	D)2 ²ⁿ	[]
,	B)2 ⁿ bit represent the sign of the r		D)2 ²ⁿ	[]
,	,		D)2 ²ⁿ D)none	[]
21 I A) MSB	bit represent the sign of the	number C)both	D)none	[]]
21 I A) MSB	bit represent the sign of the B)LSB	number C)both	D)none	[]
 21 A) MSB 22. Which gate is A) NOT 	bit represent the sign of the B)LSB generate complement of ou	number C)both utput to given input C)OR	D)none	[]
 21 A) MSB 22. Which gate is A) NOT 	bit represent the sign of the r B)LSB s generate complement of or B) NAND odes are non weighted codes	number C)both utput to given input C)OR	D)none	[]]]
 21 A) MSB 22. Which gate is A) NOT 23 co A) Gray 	bit represent the sign of the B)LSB s generate complement of or B) NAND odes are non weighted codes	number C)both utput to given input C)OR S C) binary	D)none t D) XNOR	[]]]
 21 A) MSB 22. Which gate is A) NOT 23 co A) Gray 24. (A+B)+C=A- 	bit represent the sign of the r B)LSB s generate complement of or B) NAND odes are non weighted codes B) decimal codes	number C)both utput to given input C)OR C) binary law	D)none t D) XNOR D) none	[[[[]]]]
 21 A) MSB 22. Which gate is A) NOT 23 co A) Gray 24. (A+B)+C=A- A) Association 	bit represent the sign of the r B)LSB s generate complement of or B) NAND odes are non weighted codes B) decimal codes	number C)both utput to given input C)OR C) binary law e law C) Distribu	D)none t D) XNOR D) none utive law D) none	[[[[]]]]
 21 A) MSB 22. Which gate is A) NOT 23 co A) Gray 24. (A+B)+C=A- A) Association 	bit represent the sign of the r B)LSB s generate complement of or B) NAND odes are non weighted codes B) decimal codes +(B+C) is we law B) commutative	number C)both utput to given input C)OR C) binary law e law C) Distribu	D)none t D) XNOR D) none utive law D) none	[[[]]]]
 21 A) MSB 22. Which gate is A) NOT 23 co A) Gray 24. (A+B)+C=A-A) Associative 25. Example of w A) gray 	bit represent the sign of the r B)LSB s generate complement of or B) NAND odes are non weighted codes B) decimal codes +(B+C) is we law B) commutative reighted code	number C)both utput to given input C)OR C) binary law e law C) Distribu	D)none t D) XNOR D) none utive law D) none D) none	[[[]]]]
 21 A) MSB 22. Which gate is A) NOT 23 co A) Gray 24. (A+B)+C=A-A) Associative 25. Example of w A) gray 	bit represent the sign of the r B)LSB s generate complement of or B) NAND odes are non weighted codes B) decimal codes +(B+C) is we law B) commutative yeighted code B) 8421	number C)both utput to given input C)OR C) binary law e law C) Distribu	D)none t D) XNOR D) none utive law D) none D) none	[[[]]]]]
 21 A) MSB 22. Which gate is A) NOT 23 co A) Gray 24. (A+B)+C=A-A) Associative 25. Example of w A) gray 26. 111001 is a b A) 71 	bit represent the sign of the r B)LSB s generate complement of or B) NAND odes are non weighted codes B) decimal codes +(B+C) is we law B) commutative reighted code B) 8421 binary value convert to it equ	number C)both utput to given input C)OR C) binary law e law C) Distribut C) excess-3 uivalent octal C) 15	D)none t D) XNOR D) none utive law D) none D) none D) none D) 11	[[[]]]]]
 21 A) MSB 22. Which gate is A) NOT 23 co A) Gray 24. (A+B)+C=A-A) Associative 25. Example of w A) gray 26. 111001 is a b A) 71 	bit represent the sign of the r B)LSB s generate complement of or B) NAND odes are non weighted codes B) decimal codes +(B+C) is we law B) commutative reighted code B) 8421 binary value convert to it equ B) 70	number C)both utput to given input C)OR C) binary law e law C) Distribut C) excess-3 uivalent octal C) 15	D)none t D) XNOR D) none utive law D) none D) none D) none D) 11]]]]]]

			QUESTION BANK	2018
A)American standa	rd coded for informa	tion interchange		
	ard coded for interch		C) both D) none	
29 theorem state		ange information]
	(m B) duality	C) associative law	D) commutativ	
$30. A.A^1 = $	-		, ,	
A)1	B)0	C) A	D) none	.]
31. $A+A^{1}B=$,	C) A	-	1
A) A+B		C) 0	D) none	Ţ
32. Convert AB6 to bin		C) 0		1
	B) 101010110110	C = 101010101	.01 D) 10101111]
33. Product terms is als) () 101010101	01 D) 10101111	1
A) Max terms	B) Minterms	C)both	A&B D) none	J
		S C)bour		1
34. (r-1)'s complemen		nd radiu ([] []]
A)Radix	B) Dimnishe		, ,	r 1
35. Which gate is gener				[]
A) NOT	B) NAND	C)OR	D) XNOR	r ı
36. The of d				[]
	B) fan-out	C) both	D) none	r ı
37. Sum terms is also c				Ĺ
A) Max terms $(A + B) + C = A + (B + C)$	B) Minterr		A&B D) none	r ı
38. $(A+B)+C=A+(B+C)$				[]
A)Associative law		tive law C) Distri	ibutive law D) none	r ı
39. $(231)_4$ convert to d			D)	
A) 45	B) 43	C) 42	D) none	r 7
40. 53 is decimal value	2			[]
A) 110101	B) 110010	C) 110101	D) 11001	

<u>UNIT – II</u>

Gate Level Minimization

1. Vietch diagram also	known as			[]
A) Karnaugh map	B) logic gate	C) BSD	D) none		
2. 2 variable k map con	ntains cell	s		[]
A)8	B) 4 C	C)2 I	D)12		
3. The map method is	first proposed by			[]
A) Vietch	B) charlas	C) karnaugh	D) none		
4. A grouping of 8 bit	s in K-map known as			[]
A)byte	B) octet	C) quad	D) isolated		
5. Example of UNIVE	RSAL GATE is			[]
A)NAND	B)NOT	C) OR	D) none		
6. The code used for la	beling the cells of k n	nap is		[]
A) gray	B) octal	C) BCD	D) none		
7. AND Gate requires	Minimum nur	nber of inputs.		[]
A)2	B)1	C)4	D) none		
8. A pair is a group of	adjacent cell	s in a k-map		[]
A) 2	B) 4	C)8	D) 16		
9. 3 variable k map con	ntains cell	S		[]
A) 6	B) 8	C) 5	D) 3		
10 is a group of	of 8 adjacent cells in H	K-Map		[]
A)octet	B)pair	C) quad	D) none		
11. don't care condition	represented label as_			[]
A) S	B) X	C) d	D)both B&C		
12. The output levels are	e indicated by "X" or	"d" in the truth ta	ables and are called _	_ []
A) don't care conc	litions B) minte	erms C) out	tput D) none		
13. Which gate is not u	niversal gate	_		[]
A) NAND	B) NOR	C) XOR	D) none		
14. Consider the follow:	ing Boolean function	of four variables	$f(w,x,y,z) = \sum m(1,3,4,$	11,12,1	4) The
function is				[]

A) inde	pendent of one variable	B)i	ndependent of two vari	iables	
C) indep	pendent of three variable	es D)	Dependant on all the va	ariables	
15. 4 variable k m	ap contains	cells		[]
A) 12	B) 16	C) 15	D) 3		
16. In K-map Pair	eliminates	variable from ou	tput expression.	[]
A) One	B)Two	C)Three	D)Zero		
17. In K-map Quad eliminatesvariable from output expression.]
A) One	B)Two	C)Three	D)Zero		
18. In K-map octe	et eliminates	variable from o	output expression.	[]
A) One	B)Two	C)Three	D)Zero		
19. 5 variable k ma	ap contains c	cells		[]
A) 32	B) 36	C) 15	D) 3		
20. The sum of all	the minterms of a given	Boolean function is	equal to	[]
A) Zero	B)One	C)Two	D)Three		
21. The product of	all the maxterms of a gi	iven Boolean function	on is equal to	[]
A) Zero	B)One	C)Two	D)Three		
22. Let $f(A,B) = A$	+B, simplified expressio	n for function f(f(x+	-y,y),z) is	[]
A) x+y+z	B)xyz	C)1	D)xy+z		
23. Maximum nun	nber of prime implicants	with n binary varial	ble in the reduced expr	ession is	[
A) 2 ⁿ	B) 2*n	$C)2^{n-1}$	D)2+n		
24.The Logical exp	pression $y = \sum m(0,3,6,7,1)$	0,12,15) is equivale	nt to	[]
A) $Y = \pi M(0,3,6,7)$	7,10 ,12,15)	B)y= π M(1,2,4.,5,	8,9,11,13,14)		
C) $Y = \sum M(0,3,6,7)$	7,10 ,12,15)	B)y= $\sum M(1,2,4.,5)$,8,9,11,13,14)		
	number of 2 input NANI	D gates required to i	mplement the followin	-	
function $f = (x'+y)$				[]
A) 3	B)4	C)5	D)6		
26.What is the valu	ne of B+B'A			[]
A)A	B)B	C)0	D)A+B		

				QUESTIC	ON BANK 2	2018
27 method is	s used for to simp	olify the boole	an expressions		[]
A) K-map	B)Alg	ebric rules	C)Tabular n	nethod D)AL	L	
28. The pictorial re	presentation of tr	ruth table is al	so called as		[]
A) K-Map	B)Tabular ma	np C)Bo	oth A&B	D)None		
29. The map metho	d is modified by				[]
A) Vietch	B) charlas		- karnaugh	D) none	-	-
30. The Sum of pro	oduct Boolean ex	pression repre	esented the syn	nbol is	[]
Α) π	B) ∑	C)€		D)∞		
31. The Product of	sum Boolean ex	pression repre	esented the sym	nbol is	[]
Α) π	B) ∑	C)€		D)∞		
32 m	ethod is also cal	led as Quine-	Mc Cluskey m	ethod	[]
A) K-map	B)Tabular	C)Gi	raph	D)None		
33.The minimized	expression of Y=	A'B'C+A'B	C is		[]
A) A'B	B)A'C	C)Al	В	D)BC		
34. The minimized	expression of Y=	=A'B'C+A'B	C+ABC+ABC	' is	[]
A) AC+BC	B) A+C	C)A	°C+AB	D)AB		
35. The Boolean ex	pression is f(A,E	B,C,D) of m7	representation	is	[]
A) ABCD	B) ABC'D'	C)A	'BCD	D)A'B'C'D'		
35. The Boolean ex	pression is f(A,E	B,C,D) of M	112 representat	ion is	[]
A) A+B+C+D	B) A+	B+C+'D'	C)A'+B+C+	+D D)A'-	+B'+C+D	
36. In K-map using	the sequences co	odes are			[]
A) Excess-3	B)Gra	y	C)Binary	D)BC	D	
37. 2 NAND gates	equivalent to	function.			[]
A)AND	2)OR	C)Ex-OR	D)Ex-NOR			
38. 3 NAND gates	equivalent to	function.			[]
A)AND	2)OR	C)Ex-OR	D)Ex-NOR			
39. 2 NOR gates e	quivalent to	_ function.			[]
A)AND	2)OR	C)Ex-OR	D)Ex-NOR			
40. 3 NOR gates e	quivalent to	_ function.			[]
A)AND	2)OR	C)Ex-OR	D)Ex-NOR			

<u>UNIT – III</u>

Combinational Logic

	rcuits consists of			[]
A) Input variables	B) logic ga	ttes C) output v	ariables D) a	all of the	ese
2 circuits needs	two binary inputs and	d two binary outputs.		[]
A) Full adder	B) half adder	C) sequential	D) counter		
3. In half adder circuit	the inputs are high su	um is and carry	·	[]
A) 0,0	B) 0,1	C) 1,0	D) 1,1		
4. A is a combin	ational circuit that con	nverts binary information	on from n inpu	ts lines t	to a
maximum of 2 ⁿ uni	que output lines.			[]
A) Encoder	B) Decoder	C) both A & B	D) none of	these	
5 circuits needs	s three binary inputs a	nd two binary outputs.		[]
A) Full adder	B) half adder C) of	combinational logic	D) none		
6. A decoder with n inj	puts then it produce _	out puts		[]
A) 2n	$B)2^{n}$	C)n	D) n+2		
7. A is a combina		verts binary informatio	n from n input	s lines to	o a of 2 ^r
unique output lines.				[]
,	Decoder C) both A d	& B D) none of t	hese	r	1
8. In which circuits men A) Sequential circu	mory is not required its B) synchronous ci	rcuits C) both	D) r	l]
9. In full adder circuit	· •		,		
		uni is and carry	_•	[]
B) 0,0	B) 0,1	C) 1,0	 D) 1,1	[]
			D) 1,1	[]
		C) 1,0	D) 1,1	[
10. In full subtractor ci A) 0,0	ircuit, the inputs are h B) 0,1	C) 1,0 igh sum is and carry	D) 1,1 / D) 1,1	[[es. [
10. In full subtractor ci A) 0,0	ircuit, the inputs are h B) 0,1	C) 1,0 igh sum is and carry C) 1,0	D) 1,1 / D) 1,1	_	
10. In full subtractor ciA) 0,011. A_is a special coA) Multiplexer	ircuit, the inputs are h B) 0,1 ombinational circuit de B)Decoder	C) 1,0 igh sum is and carry C) 1,0 esigned to compare the C)Comparator	D) 1,1 / D) 1,1 binary variable	_]
 10. In full subtractor ci A) 0,0 11. A_is a special co A) Multiplexer 12. A circuit with 	ircuit, the inputs are h B) 0,1 ombinational circuit de B)Decoder	C) 1,0 igh sum is and carry C) 1,0 esigned to compare the C)Comparator	D) 1,1 / D) 1,1 binary variable D)Demultij	plexer	
 10. In full subtractor ci A) 0,0 11. A_is a special co A) Multiplexer 12. A circuit with 	ircuit, the inputs are h B) 0,1 ombinational circuit de B)Decoder h n inputs and produc B)Decoder	C) 1,0 igh sum is and carry C) 1,0 esigned to compare the 1 C)Comparator the 2 ⁿ outputs. C)Comparator	D) 1,1 / D) 1,1 binary variable	plexer]]]
 10. In full subtractor ci A) 0,0 11. A_is a special co A) Multiplexer 12. A circuit with A) Multiplexer 13 circuit acts 	ircuit, the inputs are h B) 0,1 ombinational circuit de B)Decoder h n inputs and produc B)Decoder	C) 1,0 igh sum is and carry C) 1,0 esigned to compare the 1 C)Comparator the 2 ⁿ outputs. C)Comparator	D) 1,1 / D) 1,1 binary variable D)Demultij	plexer [plexer]
 10. In full subtractor ci A) 0,0 11. A_is a special co A) Multiplexer 12. A circuit with A) Multiplexer 13 circuit acts A) Decoder B) 	ircuit, the inputs are h B) 0,1 ombinational circuit de B)Decoder h n inputs and produc B)Decoder as inverse operation of Multiplexer	C) 1,0 igh sum is and carry C) 1,0 esigned to compare the 1 C)Comparator the 2 ⁿ outputs. C)Comparator of a decoder. C)Encoder	D) 1,1 / D) 1,1 binary variable D)Demultip D)Demultip	plexer [plexer []]]
 10. In full subtractor ci A) 0,0 11. A_is a special co A) Multiplexer 12. A circuit with A) Multiplexer 13 circuit acts A) Decoder B) 14. A circuit with 	ircuit, the inputs are h B) 0,1 ombinational circuit de B)Decoder h n inputs and produc B)Decoder as inverse operation of Multiplexer	C) 1,0 igh sum is and carry C) 1,0 esigned to compare the 1 C)Comparator the 2 ⁿ outputs. C)Comparator of a decoder. C)Encoder	D) 1,1 / D) 1,1 binary variable D)Demultip D)Demultip	plexer [plexer]]]

15. In, if two or more inputs are equal to 1 at the same time, the input has	aving th	e highest
Priority will take precedence.	[]
A)Encoder B)priority encoder C)Decoder D)priority encod6e	r	
16. In circuits consists of 2^n inputs with one output	[]
A) Multiplexer B) Encode C)Decoder D)None		
17. In Multiplexer consists of 2^n input lines and selection lines	[]
A) 2n B) n C) 1 D) 2+n	-	-
18. The number of 4*1 multiplexer require to implement 16*1 mux	[]
A) 5 B) 4 C) 3 D) 8		
19. The method of speeding up the process by eliminating inter stage carry delay is	called _	
addition	[]
A) Binary B) Carry Look Ahead C) Parallel D) None		
20. Parallel adder is also called as	[]
A) Binary B) Serial C) Both A&B D) None		
21. In half Adder sum simplified expression is	[]
A) AB+A'B' B) AB'+A'B C) Both A&B D) None	r	1
22. Implementation of full adder requires half adders and an gate]
A) 3, ANDB) 4, ANDC) 2, ORD) 1, OR23. In parallel adder or subtractor the mode input m=1 the circuit acts as a	г	1
A) Adder B) Subtractor C) Both A&B D) Multiplier	[]
24. In parallel adder or subtractor the mode input m=0 the circuit acts as a	[]
A) Adder B) Subtractor C) Both A&B D) Multiplier	L	1
25. The adder is a sequential circuit	[]
A) Serial B) parallel C) Both A & B D) None		
26. The adder is a Combinational circuit.	[]
A) Serial B) parallel C) Both A & B D) None		
27. The adder is work as slower.	[]
A) Serial B) parallel C) Both A & B D) None		
28. The adder is work as faster.	[]
A) Serial B) parallel C) Both A & B D) None	-	-
29. A is a multiple input and multiple output logic circuits	[
A) Multiplexer B) Demultiplexer C) Decoder D) None	г	1
30. What are basic gates required to implement a full adderA) 1-Ex-OR and 1- ANDB) 2-Ex-OR and 1- OR	Ĺ]
C) 2-Ex-OR, 2- AND and 1- OR D) 1-Ex-OR, 2- AND and 2- OR		
31. In half adder circuit the inputs are 1, 0 then sum is and carry is	[]
A) 0,0 B) 0,1 C) 1,0 D) 1,1	L	-
32. In full subtractor the inputs are low then difference is & barrow is	[]

			QUESTION BANK	2018
A) 0,0	B) 0,1	C) 1,0	D) 1,1	
33. In full subtractor the	e inputs are high then d	ifference is	& barrow is []
A) 0,0	B) 0,1	C) 1,0	D) 1,1	
34. Decimal adder is als	so called as		[]
A) Binary adder	B) BCD Adder	C) Binary Subtrac	ctor D) None	
35 adder uses s	hift register		[]
A) Serial	B) Parallel	C) Both A&B	B) None	
36. In circuit the	ere are no selection line	es	[]
A) Multiplexer	B) Demultiplexer	C) Decoder D)) None	
37. In circuit the	e selection of specific	output line is control	ol by the value of sele	ection lines
			[]
A) Multiplexer	B) Demultiplexer	C) Decoder D)) None	
38. In full adder the sim	plified carry output is		[]
A) AB+AC+BC	B) AB'+A'C+BC'	C) A'B+A'C+BC	D) None	
39. In Half adder the sir	nplified carry output is		[]
A) BC	B) AB	C) A'B	D) None	
40 adder uses re	gister with parallel load	l capacity	[]
A) Serial	B) Parallel	C) Both A&B	B) None	

	Synch		<u>F – IV</u> lequential Logic			
1.	In D-flip flop the input D=0 the ou	tput is			[]
	A) 1 B) 0	1	C) X	D) 10	-	-
2.	In asynchronous are to design	gn			[]
	A) easy B) d	ifficult	C) both A&B	D) medium		
3.	In SR latch the S referred to				[]
	A) Synchronous B) so	et	C) start	D) none		
4.	In T flip flop the input T=1 then Q	n+1 is			[]
	A) Qn B) Qn'		C) Qn+1	D) 0		
5.	In SR latch s=1,r=1 the state is				[]
	A) No change B) reset		C) set	D) indetermi		
6.	In synchronous counter , if t	hen flip f	lop complements the	input at the tim	e of clo	ock
	edges			-	L	
	A) T=1 B) J=K=1	C)	both A & B	D) none		
7			1.6 0000 /	11 1 /	0000	
7.	In Binary counter counts in binary			and back to	0000.	,
0	A)1001 B) 1111 C) 1		D) 0000		l]
8.	10. In SR latch the R referred to				[]
0	A)Synchronous B) Reset			t at any particul	or timo	o]]
9.	A is a circular shift register v others are cleared.	vitii oniy	one mp nop being se	et at any particul	ar time	-
	A) ring counter B) shift regi	stor	C) hippry counter	D) none of th		
10	A sequential circuits consists of		C) binary counter	D) none of th	r]
10	A) storage element B) logic gate		⊾ ለ <i>ዩ</i> ₽	D) all of thes	l	1
11		,	li Aa d	D) all of thes	_	1
11	D-flip flop is also known as		- flin flor			
12	A) Delay flip flop B) SR latch Flip flops are used for	I C) JK	пр пор	D) none	Г	1
14	A) Memory element B) delay ele	— amont	C) both	D) none	L	1
12	, <u>,</u> , <u>,</u>		,	,	г	1
15	A J-K flip flop is in "No Change"				[
1.4	A) J=0 K=0 B) J=1 K=1		C) J=0 K=1	D) J=1 K=0	r	,
14	How is a JK Flip flop made to tog	-			[
	A) J=0 K=0 B) J=1 K=1		C) J=0 K=1	D) J=1 K=0		
15	In counter all the flip flops		ked simultaneously		[]
	A) Asynchronous B)Synchron	ous	C) Ripple	D) none of th	ese	
16	. A J-K flip flop is in "No Change	" condition	on when the value of		[]
	A) J=0 K=0 B) J=1 K=1		C) J=0 K=1	D) J=1 K=0		
17	A is a register for counting the	e no of clo	ock pulses arriving at	its clock inputs	. []
	A) Counter B) Register		C) Flip Flop	D) Decoder		
18	How is a JK Flip flop made set st	ate		[]	

			QUESTION BANK	2018
A) J=0 K=0	B) J=1 K=1	C) J=0 K=1	D) J=1 K=0	
,	ip flop made set state	,	, []
	B) S=1 R=1	C) S=0 R=1		1
20.A is a grou	p of flip flops		[]
A) Register	B) latches	C) counter	D) none of these	
21. In SR flip flop S	S=1,R=0 then the state is_		[]
A) set	B) reset	C) nochange	D) indeterminate state	
22. T-flip flop is als	o known as		[]
A) Delay flip fle	p B) SR latch C)	Toggle flip flop	D) none	
23. In SR latch s=0,	r=1 the state is	_	[]
A) No change	·	C) set	D) indeterminate	
24. In counte	r all the flip flops are clo	ocked simultaneou	usly []
A) Asynchronou	is B)Synchronous	C) Ripple	D) none of these	
25. In SR latch s=1,	r=1 the state is	_	[]
A) No change	B) reset	C) set	D) indeterminate	
26. In which circuit	s memory is required		[]
A) Sequential c	ircuits B) synchrono	us circuits C) bot	thA&B D) none	
27. Examples of sec	uential circuit		[]
A) Multiplexer	B) Decoder C)	flip-flops	D) none	
28. 64 GB=			[]
A) 2^{30}	B) 2^{36} C) 2	2 ³²	D) none of these	
,	=1,k=1 then the state is		,]
A) Q_n^1		both D) no		L
	s memory is not required	· · · · · ·	[1
	cuits B) synchronous c			Ţ
, 1	· •	· · · · · ·	nts the input at the time of	clock
edges]
-	B) $J=K=1$ C) both A d	& B D) no	ne	J
·	o flop implemented using	· · · · · ·	[1
A)SR Flip flop				1
	nput is 1 then ouput is		[]
A) Synchronous		D) none	L	1
, ,	, ,	,	1 hit counter is 1 1 1 -	-0011
• •	-	present state of a	4-bit counter is $A_3A_2A_1A_0=$	_
then the next co		\mathbf{D}) where \mathbf{f} (b)	l]
,	, , , ,	D) none of th		11
	•	ly one flip flop be	eing set at any particular tin	ne, all
others are cleare				J
A) ring counter	B) shift register	· •		-
	ic equation of SR Flipflog]
A) S+R'Qn 37 The characteris	B) S'+RQn tic equation of IK Flipflo	C) S+R n is On $\pm 1-$	D) Qn	1
A) JQn'+KQn	tic equation of JK Flipflo B) JQn'+K'Qn		l Dn+KQn D) None]
		C		

		(QUESTION BAI	NK 2	018
38. The characteristic equationA) TQn'+T'Qn	on of T Flipflop is Qn+1= B) TQn'+T'Qn'		Qn+TQn	[D) N] None
39. The characteristic equationA) DQn	on of D Flipflop is Qn+1= B) D'Qn'	= C) D'	D) D	[]
1	it is easier to design Synchronous	C) Ripple	D) none of th	[nese]

<u>UNIT – V</u> <u>Memory and Programmable Logic , Digital Logic Circuits</u>

	operations		[]
A) Read	B) write	C) both A&B	D)none	
2. PAL stands			[]
A) Programmabl	e logic array B) programm	able array logic C) bot	th A & B D) none	
3.A memory write st	ores binary information in	group of bits called	[]
A) Words	B) bytes	C) GB	D) none	
4.SRAM is made of	with	_	[]
A) capacitors	B) register	C) latches	D) counter	
5. How many types of	of memories are used in dig	gital systems?	[]
A) 2	B) 3	C) 4	D) 5	
6. DRAM abbreviate	d as]]
A) Delay RAM	B)Determinate RAM	C)Dynamic RAM	D) none	-
-	ROM is required	-	, I]
A) 2 ⁿ	B) 2*n	C) n+1	D) n	L
,	enable input is active, and	<i>'</i>	,	licate
operation to be		i Tead, write input valu		110 I
-	-	C) both A & B	D) none of these	1
A) read	B) write	,	D) none of these	1
e	method if the data bits are	0 1	• -]
A) 5 10. informat	B) 4 ion is stored in memory	C) 3	D) none of these	1
A)Binary	B) decimal	C) octal	D) none]
•	oring data into the memory	· ·		1
A) read	B) write	C) delete	D) none of these	Ţ
12.TTL is	,	,	, []
A) Transistor- Tr	ansistor Logic	B) Transistor- Transf	er Logic	
C) Transistor- Ta	•	D) none of these	C	
12 The is a pr	rogrammable logic device	with a fixed OP array	and a programmable	A NIT
array.	ogrammable logic device	with a fixed OK affay a		
A) PAL	B) PLA	C) PROM	D) none of	these
·	binary information perman)	1
	permanon perma	•		ر ۱۰
	B) ROM	(C) hoth $\Delta \mathcal{R}_{T}$	B D) none of	These
A) RAM	B) ROM	C) both A & I	B D) none of	these

		QUESTION BANK	2018
15.In Hamming code technique, if the	data does not have any error	then C = []
A) 10001 B)00	•		1
16. The is a programmable logic	c device with a fixed AND ar	rav and a programm	able OR
array.		[
A) PAL B) Pl	LA C) PROM	D) none	of these
17.A group of eight bits is called a]]
A) Bits B) by	te C) kilobyte	D) none	of these
18. The read only memory is a d	evice	[]
A) Programmable logic B) co	ombinational logic C) A & B	D) none	
19.ROM performsoperation.		[]
A) Read B) W	Vrite C) Both A&	&B D)None	
20.Types of ROM memories are		[]
A) EPROM B) EEPROM	C) PROM	D) All of	these.
21.EEPROM abbreviated as		[]
A) Erasable – Erasable PROM	B) Electrically Erasable P	ROM	
C) Electrically- Electrically PROM	D) none of these		
22 is a nonsaturated digital logic	c family.	[]
A) ECL B) TTL	C) both A & B	D) none of these	;
23.64 GB=		[]
A) 2^{30} B) 2^{36}	C) 2 ³²	D) none of these	
24. The process of transferring the stor	ed data out of memory is refe	erredoperation.[]
A) write B) re	ad C) both A & B	D) none	
25. The is a programmable logic	e device with a programmabl	e OR array and a pro	ogrammable
AND array.		[]
A)PAL B) PLA C) Pl	ROM D) none of	these.	
26. 1 GB=	- ,]	1
A) 2^{30} B) 2^{36} C) 2^{32} D) none of the function o	nese	L	-
		г	1
27 is a volatile memory	D(M = D) = 11	[]
	ROM D) all	r	-
28. RAM ismemory		[
A) Temporary memory B) permane	ent memory C) both D) nor	ne	
29. PLA stands		[]
A)Programmable logic array B) pro	ogrammable array logic C) be	oth A & B D) none	
30. In Hamming code method if the dat	a bits are 7 range then the pa	rity bits size is []
A) 5 B) 4	C) 3 D) 1	none of these	
31. SRAM abbreviated as		г	1
A) Static RAM B)Set RAM	C)Dynamic RAM D) 1]
		none	1
32. The process of retrieving data into A) read B) w	•	D) none of these	
D) w			
Digital Logic Design			Page 18
			-

		QL	JESTION BANK 20	18
33.ECL is			[]
A) Transistor- Transistor I	Logic	B) Emitter- coupled L	ogic	
C) Emittor - Tamsmitter I	Logic	D) none of these		
34. A group of 16 bits is called	d a		[]
A) Bits	B) word	C) kilobyte	D) 2 words	
35. When the memory enable operation to be performe	d	-	[]
A) read	B) write	C) both A & B	D) none of th	nese
36.A group of 32 bits is called	a		[]
A) Bits	B) word	C) kilobyte	D)Double word	
37 memory consist of H	High cost.		[]
A)SRAM	B)DRAM	C)Both A& B	D)None	
38 memory consist of	low cost.		[]
A)SRAM	B)DRAM	C)Both A& B	D)None	
39. erased with an electrica	l signal instead o	of ultraviolet light.	[]
A) Erasable – Erasable PF	ROM B) El	ectrically Erasable PRO	М	
C) Electrically- Electricall	y PROM D) no	one of these		
40. placed under a special ult	raviolet light for	r a given period of time	will erase the pattern	in
ROM.	C		· []
A)ROM B)P	ROM	C)EPROM D)E ² PH	ROM	-